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We analyze the formation, propagation, and interaction of stable two-frequencys2+1d-dimensional solitons,
formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the
two transverse dimensions.
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The generation of stable spatial optical solitons is of great
interest due to the variety of the solitons’ interactions, their
particlelike characteristics, and their potential technological
applications[1]. Spatial soliton formation requires a balance
between the beam’s tendencies to self-focus and diffract. In
bulk [three-dimensional(3D)] media, such propagation is
unstable, unless the focusing nonlinearity saturates with the
intensity [2,3]. Experimentally, spatials2+1d-dimensional
solitons have been demonstrated in a variety of physical sys-
tems, including photorefractive media[4,5], quadratic media
[6,7], and saturable Kerr media[8,9]. While the equations
governing the various types of self-trapped waves differ, the
fundamental propagation and interaction properties remain
the same[10].

We have recently proposed a method for generating spa-
tial Raman solitons[11]. We adiabatically prepare a Raman
transition in a single eigenstate near maximum molecular
coherence by driving the medium with two opposite circu-
larly polarized laser fields whose frequency difference is
slightly detuned from the Raman resonance(Fig. 1). De-
pending on the sign of the detuningDv, the adiabatically
established molecular coherence is either in phase or out of
phase with the strong two-photon drive. Angular-momentum
conservation rules prevent Stokes and anti-Stokes sideband
generation[12]. Instead the molecular coherence modifies
the refractive indices of the driving lasers[13–15] and leads
to either focusing or defocusing, depending on the sign on
the detuning[16]. An appropriate choice of the input inten-
sities and the two-photon detuning from the Raman reso-
nance leads to brightsDv.0d or dark sDv,0d soliton for-
mation.

In this paper, we extend the analysis of bright Raman
solitons to three spatial dimensions. We numerically and
theoretically demonstrate that these solitary waves are stable
to perturbations and survive soliton-soliton collisions. Stabil-
ity is achieved by operating near maximum molecular coher-
ence,urabu<1/2, and thereby saturating the Raman nonlin-
earity with the laser intensity. Adiabatic preparation of near
maximum coherence is essential and ties this work to broad-
band Raman generation[17] and electromagnetically in-
duced transparency[18].

Following Ref.[19], we consider a model Raman system
excited with opposite circularly polarized pump,Ep, and
Stokes,Es, lasers, oscillating at frequenciesvp and vs. The
analysis applies to beams propagating along thez axis with
the electric field oscillating in two transverse dimensions(x

andy). We assume no time variation in the propagating beam
profiles. Experimentally, this can be realized using flat-top
pulses. The slowly varying envelope propagation equations
for the pump and the Stokes beams at steady state are
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whereN is the molecule number density andh=sm /e0d1/2.
The population in the two statesual and ubl are given byraa
andrbb. The molecular coherence of the two levels,rab (off-
diagonal density-matrix element), is responsible for the in-
tensity dependence of the refractive index. The dispersion
coefficients at the pump and the Stokes frequencies,ap, as,
dp, ds, and the coupling coefficientb, are calculated else-
where [19]. When the matrix elements of the Hamiltonian
that describes the evolution of the molecular system vary
slowly compared to the separation of the eigenvalues of the

FIG. 1. Energy-level diagram of a sample Raman system driven
by two opposite circular polarized fields. As shown, the two-photon
detuning is positive leading to self-focusing.
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Hamiltonian, the molecular medium can be prepared adia-
batically in an eigenstate that is smoothly connected to the
ground state. Examining only the bright soliton case
sDv.0d, the density-matrix elements of this eigenstate are

rab =
B/2

ÎuBu2 + sDv − D/2 + A/2d2
,

raa = cos2Su

2
D ; rbb = sin2Su

2
D s2d

with A=apuEpu2+asuEsu2, B=bEpEs
* , D=dpuEpu2+dsuEsu2, and

tan u=2uBu / s2Dv−D+Ad, resulting in the refractive index
enhancement. The effect of collisional dephasing may be ac-
counted for by adding an imaginary termjG to the two-
photon detuningDv. The dephasing rate of the Raman tran-
sition determines the loss of the driving fields and, therefore,
sets the maximum pulse width.

In the analytical portion below, but not in the numerical
portion of this work we make the following assumptions:(1)
The solitons are cylindrically symmetric;(2) since the driv-
ing lasers are far detuned from one-photon resonances, we
take all dispersion constants to be equal,ap=as=dp=ds;a0;
(3) since the Raman frequency is much smaller than the driv-
ing lasers’ frequencies, we takevp=vs;v0 andkp=ks;k0.
Letting Epsz=0d=Essz=0d=E0sz=0d, and using the expres-
sion for rab from Eq. (2) we transform Eq.(1):
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wherek=h"v0k0Nubu2/Dv. In 3D, only a numerical solution
exists to this equationf8g.

The self-trapped solution to Eq.(3) must have the form
E0sr ,zd=Fsrdexps−jjzd. We determine the relationship be-
tween the wave vectorj and radial beam profileFsrd, by
substituting the expression forE0sr ,zd into Eq. (3),
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We determine the magnitude ofj by choosing peak soli-
ton amplitudeFsr =0d=F0. Then the boundary conditions are
Fsr →`d=0, s]F /]rdsr →`d=0, and s]F /]rdsr =0d=0. We
vary the values ofj and numerically integrate Eq.(4) until
the computed spatial profileFsrd satisfies the given boundary
conditions. In Fig. 2, we calculate several soliton profiles
corresponding to various peak molecular coherence values.
The soliton’s beam size varies inversely with the field ampli-
tude. As the peak intensity decreases, the saturation is re-
duced, and the soliton shape approaches the calculation by
Chiaoet al. [8]. We find that both the value ofj and the total
power increase as the peak soliton intensity is raised.

The stability of the solitons of Fig. 2 against small pertur-
bations can be shown by using the well-known Vakhitov-
Kolokolov stability criterion[20,21]. In Fig. 3, we numeri-
cally calculate the power contained in each soliton,Psjd
=2peFsjd2r dr, and plot versus the parameterj. This calcu-

lation shows that ]P/]j.0 which, according to the
Vakhitov-Kolokolov criterion, proves the stability of the soli-
ton. The stability is a consequence of the saturation term on
the right-hand side of Eq.(3).

We proceed with soliton propagation and collision dy-
namics in a real molecular system. Here, we neither assume
cylindrical symmetry nor make the dispersive approxima-
tions of Eq. (3). We consider the un9=0,J9=0l
→ un8=0,J8=2l rotational transition in molecularH2 with
vb−va=354 cm−1. The simulation parameters are similar to
those in our recent experiment[16]: molecular densityN
=2.6831019 molecules/cm3 and the two-photon detuning is
Dv=1 GHz. The wavelengths of the pump and the Stokes
beams are 800 nm and 823 nm, respectively. In our simula-
tion, we use the method of lines. Starting with the initial
values, we evaluate the transverse derivatives and the pump
and the Stokes field amplitudes of Eq.(1) on a 2D grid. We
then advance the field envelopes inz, using a four-step
Runge-Kutta method.

Dispersion modifies the soliton profiles of Fig. 2. The
propagating waveform converges to a solitary wave when the
initial beam parameters differ from the exact soliton shape.

FIG. 2. Initial soliton profiles calculated by numerical integra-
tion of Eq. (4). The shapes are cylindrically symmetric and corre-
spond to peak coherence values of 0.02(dotted line), 0.09 (long
dashed), 0.29(short dashed), 0.45(solid). The corresponding values
of j=s1.2,4.8,19.0,49.5d m−1, respectively.

FIG. 3. Vakhitov-Kolokolov stability criterion. The total power
in the soliton beam is shown as a function of the parameterj in Eq.
(4).
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We examine soliton stability and convergence by propagat-
ing initial Gaussian pulses of similar intensity and beam
width to the shapes in Fig. 2. In Fig. 4, we plot the field
intensity of two pump pulses versus propagation distance
along thez axis. The inset figure represents the correspond-
ing peak field intensity versus distance. In part(a), the pulse
corresponds to an initial intensity of 6.23109 GW/cm2 and
full width half maximum(FWHM) of 0.10 mm. In part(b),
the pulse corresponds to an initial intensity of 3.3
3109 GW/cm2 and FWHM of 0.13 mm. As the Gaussian
pulses propagate, their shapes breathe as the beams converge
to respective soliton shapes. The breathing behavior is
clearly apparent in the inset plots. The beams are centered at
the origin in thex-y plane and the three-dimensional plots
are generated by takingy=0 for each value ofz. The peak
soliton intensity is a factor of 1.4 higher than the initial pro-
file’s intensity in Fig. 4(a), and a factor of 1.8 higher in Fig.
4(b). Since the total power is conserved, the beam narrows in
profile as the peak intensity increases. The amplitude of the
breathing depends on the mismatch of the initial intensity
profile from the corresponding soliton shape. In Fig. 4(b),
breathing becomes negligible in<50 cm, but in part(b), the
breathing continues for<1 m. This convergence distance is
determined by the peak coherence value. At higher coher-

ence, the response of the system increases and the equilib-
rium is reached in a shorter distance. These figures clearly
demonstrate the stability of Raman solitons to the perturba-
tions of the beam shapes.

We now proceed with numerical studies of soliton-soliton
collisions. In an elastic collision, two solitons pass through
each other, maintaining their shape. In an inelastic collision,
two solitons fuse after colliding and become a single soliton.
The outcome of a soliton interaction is determined by the
angle of the collisionu [10,22]. When the collision angle
exceeds some critical angleuc the collision is elastic. When
u,uc, the solitons fuse together. Whenu<uc solitons dis-
appear after colliding, as the diffraction overcomes self-
focusing.

In Fig. 5, all three possible interaction outcomes are
shown. At an initial peak coherence of 0.39s7.3 GW/cm2d,
two Gaussian pulses converge to soliton profiles before col-
liding. For the given parameters,uc<0.006 rad[23]. The
beams approach each other as solitons at anglesu

FIG. 5. Calculation of soliton collisions for three cases.(a) In-
elastic collision: beams collide and fuse into one soliton. The beams
are launched at the collision angle of 0.003 rad.(b) Beams collide
and disappear; collision angle of 0.006 rad.(c) Elastic collision:
beams collide, pass through each other, and remain solitons; colli-
sion angle of 0.012 rad.

FIG. 4. Initial Gaussian profiles propagating through a 1 m long
H2 cell. In the absence of Raman self-focusing, the spatial width of
the beam would increase by a factor of 50 in part(a), and a factor
of 30 in part (b). The inset figure shows the peak beam intensity
versus propagation distance. The beam breathes as it converges to a
soliton. The initial peak coherence is 0.43 in part(a), and 0.29 in
part (b). The convergence distance in(a) is shorter than in part(b).
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=0.003 rad, 0.006 rad, and 0.012 rad, respectively. In part
(a), the solitons collide and fuse into one; in part(b), the
solitons collide and disappear; in part(c), the solitons collide
and pass through each other. In the elastic collision case,
after interaction, the emerging waveform begins to breathe as
it converges to a soliton profile. In our simulations, we pick
the initial phase profiles so that the two input pulses propa-
gate in they-z plane. Choosing the origin to be in the middle
of the cell, we center the input pulses atsx,y,zd=s0,y0,0d
and s0,−y0,0d and propagate the pulses toward each other
along they axis. The displayed figures show the electric-field
amplitude versusy andz at a fixed value ofx. For each value
of z, the plot is then a slice alongy at a value ofx where the
electric field peaks.

In summary, we have presented the numerical and theo-
retical analysis of two-frequency Raman solitons in a mo-
lecular system. We have shown that these solitons are stable
in the two transverse propagation dimensions. In our analysis
we ignored the time dependence of the pump and the Stokes
pulses and we also assumed no dephasing of the Raman tran-
sition. There are several potential practical limitations to the
Raman solitons that require further study. First, to prepare
the molecular coherence the medium absorbs photons from
the pump field and emits into the Stokes field at the leading
edge of the pulses. At the trailing edge, photons are absorbed
at the Stokes field and emitted into the pump field. The re-
sulting delay of the time envelope of the pump pulse with
respect to the Stokes pulse sets the minimum-energy require-
ment to form a soliton[24]. The number of photons in the

leading edge of the pump pulse must equal the number of
molecules contained in the volume swept by the pulse,
Vswept=

1
2Lpw0

2, wherew0 is the soliton spot size andL is the
distance the pulse propagates through the medium. Second,
the dephasing of the Raman transition will lead to some loss
of the pump and the Stokes fields. Hence, the pulse width
must be shorter than the dephasing time(<100 nsec for the
parameters in this paper, at 77 K, and can be increased by
further cooling). Finally, the leading edges of the pump and
the Stokes pulses will diffract. While the exact behavior re-
quires a time domain analysis, we can estimate the spot size
of the leading edges at a distanceL@zR after the beginning
of the cell, aswsLd=w0L /zR, wherezR=pw0

2/l (assuming
the worst case scenario of a freely diffracting beam). As the
leading edge diffracts, the energy is deposited into a larger
volume of molecules than required for soliton propagation.
This raises the minimum-energy requirement by a factor of
sL /zRd2.
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