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Following the experiments of Shverdin and colleagues [Phys. Rev. Lett. 94, 033904 (2005)], we describe a
technique for determining the temporal envelope of an optical beam whose spectrum consists of n discrete,
equally spaced frequency components. Four-wave mixing is employed to generate n−1 higher-frequency
sidebands. The relative intensities of these sidebands, together with the intensities of the incident side-
bands, determine the unknown relative phases of the incident beam. © 2005 Optical Society of America

OCIS codes: 190.4380, 320.7100, 320.7110.

Over the past several years it has been shown that
molecular modulation can produce a collinear beam
of mutually coherent sidebands that extend in fre-
quency from the IR to the far UV.1–4 Adjusting the
phases of these sidebands allows periodic optical
waveforms with a prescribed temporal shape to be
synthesized. In early experiments the temporal
shape of the synthesized waveforms was measured
by using multiphoton ionization.5

Recently, Shverdin et al.6 used a new technique for
waveform characterization based on four-wave mix-
ing of the type vi+vj−vk. They described how n
equally spaced Raman sidebands incident on a Xe
cell will generate n−1 higher-frequency (UV) side-
bands that extend the incident comb of frequencies.
Adjusting the relative phases of the incident side-
bands and thereby shaping the incident temporal
waveform dramatically altered the relative intensi-
ties of the UV sidebands. A train of single-cycle
pulses maximized the UV intensity, FM-like wave-
forms minimized the intensity, and other waveforms
produced particular relative intensity distributions.6

In this Letter we describe the inverse process: the
use of the generated n−1 component UV spectrum to
determine the unknown relative phases of the pri-
mary spectrum. With the primary sidebands’ ampli-
tudes known, the incident temporal waveform is de-
termined to within the carrier-envelope phase. This
method is suited for multioctave waveforms with dis-
crete sidebands, a regime not easily accessible with
conventional methods such as frequency-resolved op-
tical gating.7

Figure 1 depicts the experimental setup for the
technique. The generated Raman sidebands are dis-
persed by a prism, individually phase corrected, and
refocused into the target Xe cell. A photomultiplier
tube measures the power of each of the generated UV
sidebands. Because it allows focusing to the cell cen-
ter, we use the nonlinear difference-frequency pro-
cess vi+vj−vk. (The alternative, a sum-frequency
process of the type vi+vj+vk, will have a much lower
generation efficiency because of Gouy phase shift.8)

To start, we assume that the incident Raman side-
band frequencies extend to zero so that the frequency
of the qth sideband is vq=qvv. We also assume that
the relative phases of the sidebands are controlled.
Figure 2 shows three temporal waveforms, their

spectral amplitudes (square root of their powers),
and the spectral amplitudes of the generated UV
sidebands. As expected, the single-cycle (mode-
locked) waveform generates the highest-amplitude
UV spectrum [Fig. 2(g)], while the FM-like spectrum
generates the lowest amplitude [Fig. 2(h)]. The gen-
erated spectrum of the sawtooth waveform [Fig. 2(i)]
is similar to the single-cycle generated spectrum but
of lower amplitude and slower dropoff. The technique
of this work determines the temporal waveform (left-
hand panels) to within a carrier-envelope phase from
the power spectra (middle and right-hand panels).

Experiments that use the Raman technique to pro-
duce a comb of sidebands have, to date, used two in-
dependent driving lasers whose absolute frequencies
are not a multiple of their frequency difference.1,2,4

As a result, the spectrum of n sidebands has two in-
dependent phases. Also, because the lowest fre-
quency of the comb is offset from zero, the sidebands
do not constitute a strict Fourier series, and the
waveform is not periodic. In this situation we control
n−2 relative phases and synthesize the envelope of
the temporal waveform. The carrier-envelope phase
now varies linearly with time, causing the waveform
to drift slowly under the envelope.9

For a wide-bandwidth waveform, changes in
carrier-envelope phase may drastically alter its
shape. Illustrating this, Fig. 3(a) depicts a Fourier-
synthesized sawtooth waveform and its envelope;

Fig. 1. Experimental setup for synthesis and characteriza-
tion of a set of sidebands. Through molecular modulation,
optical sidebands are produced in a D2 cell. The sidebands
are dispersed through a prism, individually phase modu-
lated, recombined, and focused into a Xe cell. A detector
measures the power spectral density of the sidebands gen-
erated through difference-frequency conversion.
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Figs. 3(b)–3(d) depict qualitatively dissimilar wave-
forms that differ only in carrier-envelope phase.

We describe two techniques that allow the determi-
nation of the temporal envelope, given the known
powers of the n Raman sidebands and the n−1 gen-
erated UV sidebands. The first technique is sug-
gested by noting that we may generate n−2 polyno-
mial equations for the n−2 unknown relative phases.
We consider the difference-frequency process vq=vi
+vj−vk and assume that all the generated sidebands
are sufficiently far from resonance that the third-
order susceptibility is independent of frequency. We
also ignore all propagation effects including disper-
sion, which can be made negligible by either reducing
the gas pressure or switching to a less dispersive me-
dium. With the electric field of the jth sideband writ-
ten as s1/2dEj expfisvjt+fjdg+c.c., the power Psvqd
generated in sideband q by sidebands 1 through n is

Psvqd = KU o
i=q−n+1

n

o
j=q−i+1

n

EiEjEk
* expfisfi + fj − fkdgU2

,

s1d

where k= i+ j−q, q.n, and K is an unknown propor-
tionality constant. The summation in Eq. (1) results
in only one term for the highest sideband, q=2n−1.
The power of this sideband is therefore independent
of the input phases, and we may use it to solve for the
unknown proportionality constant K.

We next set the two lowest phases to zero with the
following linear transformations: adding a common
phase to each sideband (a carrier-envelope phase
shift) and adding a phase proportional to each side-
band frequency (a time origin shift). Both of these
transformations leave Psvqd unchanged; thus neither

the time origin nor the carrier-envelope phase can be
determined by our technique.

We let Eq expfifqg=zq, transforming all equations
to polynomials in the unknown complex variables zq.
For example, for four input sidebands, the powers of
the two phase-dependent, generated sidebands are

Psv5d = Kuz3
2z1

* + 2z4z2z1
* + 2z4z3z2

* + z4
2z3

*u2,

Psv6d = Ku2z4z3z1
* + z4

2z2
*u2,

where zq
* =Eq

2 /zq. We numerically solve these polyno-
mials for all sets of solutions and retain only those so-
lutions corresponding to measured magnitudes, i.e.,
uzqu= uEqu. We are left with 2sn−2d sets of solutions.

A second experiment is necessary to select the cor-
rect solution from the previous set of solutions. This
is easily done: if all the Raman sidebands except for
the lowest three are blocked, then the difference-
frequency process generates two UV sidebands. Solv-
ing the equations associated with these sidebands
gives two solutions for z3. By cross referencing these
two values for z3 with the original 2sn−2d solutions for
z3, we pick the pair of values for hz3 ,… ,znj that solves
all equations. The waveforms represented by the two
solutions are time-reversed versions of each other.
The analytic procedure described here is incapable of
differentiating between time-reversed solutions.

The procedure as described above may turn out to
be impractical. By using Mathematica’s NSolve func-
tion we are unable to obtain solutions for n.6 side-
bands. In this case, it may be possible to use adaptive
numerical techniques similar to those used in
frequency-resolved optical gating to solve the polyno-
mial equations.

Fig. 2. Three waveforms of equal power are depicted (left-hand panels) along with the spectral amplitudes (middle panels)
and the spectral amplitudes generated by difference frequency conversion (right-hand panels). From top to bottom, the
waveforms are (a) single-cycle, (b) FM, and (c) sawtooth waveforms. The waveforms consist of nine Fourier sidebands span-
ning 3.2 octaves. Amplitude comparisons between rows are meaningful, but comparisons between columns are not.
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We next describe a related iterative technique that
works for an arbitrary number of sidebands. We set
f1 and f2 to zero as before and block all but the low-
est three sidebands. The equations for generated
sidebands q=4 and q=5 uniquely determine the
single unknown, f3 (and its time-reversed value).
Next, the fourth Raman sideband is uncovered. Plug-
ging one of the values for f3 into the equations for
generated sidebands q=5 and q=6 uniquely deter-
mines the single unknown, f4. In this manner, by un-
blocking successive Raman sidebands, we may itera-
tively solve for the phases of an arbitrary number of
sidebands.

A third characterization technique substitutes a
sum-frequency generation process for the difference-
frequency process. Experimental implementation
would require enhanced conversion efficiency (with,
for example, the use of gas jets). This process gener-
ates more sidebands, resulting in an overdetermined
set of polynomial equations. Therefore a single mea-
surement is sufficient to uniquely identify the
phases. Using this method, we have obtained solu-
tions for as many as n=8 sidebands.

In summary, this Letter describes several tech-
niques for characterizing the complex envelope of
multioctave temporal waveforms consisting of dis-
crete, equally spaced sidebands.
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Fig. 3. (a) Nine-Fourier-component sawtooth waveform
(solid) and its envelope amplitude (dotted). The waveform
is significantly altered as the carrier-envelope phase is
changed by (b) p /3 rad, (c) 2p /3 rad, and (d) p rad while
the envelope amplitude remains unchanged.
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